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Abstract
We present a new analytic approach to Hermite’s interpolation problem in two
dimensions. The interpolating curves are the exact solutions of a variational
problem that is invariant under translations and rotations. We study the general
case of functionals that are given by the integral of the curvature raised to
some power ν along the curve. The parameter ν determines the importance of
minimal curvature with respect to minimal length. The boundary conditions
are given by the initial and final points of the curve and the tangent vectors at
these points. In order to find the family of functions that obtain the minimal
weight, we use extensively notions that are well known in classical mechanics.
The minimization of the weight functional via the Euler–Lagrange formalism
leads to a highly non-trivial differential equation. Using the symmetries of
the problem it is possible to find conserved quantities that help to simplify the
problem to a level where the solution functions can be written in a closed form
for any given ν.

PACS numbers: 02.60.Ed, 02.30.Xx, 45.20.−d

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this work we consider the classical Hermite interpolation problem of finding a curve that
goes through two points in a plane with given tangent vectors at these points [1]. We investigate
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a very broad class of variational curves [2]5 which result from minimizing the integral of the
curvature κ raised to some power ν along the curve:∫ tf

ti

[κ(t)]ν ds(t). (1)

The parameter ν determines the importance of minimal curvature with respect to minimal
length. Solutions to the above problems have been studied for specific choices of ν. For ν = 0
and ν = 2 the integral is known as the stretch and bend energy, respectively. However, the
exact solutions for arbitrary values of ν have not been determined yet.

Our approach to solve this problem analytically is motivated by its physical flavour. Terms
such as bending or stretching already have connotations to physics, but in fact we take the
analogy much further and use extensively concepts from analytical mechanics in order to
obtain the curves that minimize the integral in equation (1). The crucial point is to exploit
the translational and rotational symmetries of the problem that are explicit in the parametric
formulation in equation (1). A well known theorem by Noether [3]6 states that each continuous
symmetry is associated with a conserved quantity. In order to apply this theorem we reformulate
the problem in a way that is not manifestly invariant under those symmetries, but allows us
to extract the conserved linear and angular momenta. These constants of motion allow us to
provide explicit solutions to the variational problem.

The quality of interpolation curves is relevant to many fields that deal with numerical
data. In particular the importance of Hermite interpolation is well recognized in the field of
computer aided geometrical design (CAGD) [4]. For computational reasons many applications
related to interpolation rely on simple functions, such as Bezier curves [5]7. However, there
exists both practical and theoretical motivation to explore the exact solutions of the functional
minimization of equation (1).

Obviously there are cost-related applications where the quality of the interpolation is more
essential than the time needed to obtain the solution. Consider for example a spacecraft that
has been launched to explore some distant planets and which is flying with constant velocity v
through the interstellar space. When approaching a certain planet, one has to adjust carefully
the trajectory of the spaceship, say to enter the atmosphere of the planet at a precise angle
or to use its gravitational field to accelerate the spacecraft to its next destination. Suppose
that for this purpose the spaceship has thrusters that exert a force F perpendicular to the
direction of motion. Then at any given time t between the ignition (at ti) and the end of the
manoeuvre (at tf ) the instantaneous curvature radius r = κ−1 is inversely proportional to F .
Let us assume that the fuel consumption per unit time W is governed by some potential law,
i.e. W ∝ Fν ∝ κν , where ν is an empirical parameter. Then the total fuel consumption,
C = ∫ tf

ti
W dt , is proportional to the action in equation (1), since dt = ds/v. Note that once

we have found the solution for the trajectory we can obtain the curvature as a function of t ,
which indicates how much fuel should be burned at each point.

Additional insight into standard interpolation functions can be obtained by comparison
with the exact solutions presented in this paper. While a detailed analysis of this kind is beyond
the scope of this paper, we present here numerical results that focus on the cubic Bezier function
as an approximation to the variational curves we study.

Finally the generality of our approach makes it readily applicable to different forms of the
weight functional as long as it shares the translational and rotational symmetries. In fact we
believe that the physics concepts and language introduced in our work might prove useful to

5 For the general concept and definition of variational curves see also [8].
6 See also [7].
7 See also chapters 1 and 4 in [4] and references therein.
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Figure 1. Different ‘smooth connection functions’ that connect the initial point ri = (xi , yi ) with
the final point rf = (xf , yf ). At ri and rf the curves are tangent to the associated rays (dashed),
which are specified by their inclination angles, αi and αf , with respect to the vector pointing from
ri to rf . The dotted curve (resulting from ν = 1.2) is the shortest, but has the strongest curvature.
Conversely, the solid curve (ν = 20) is the longest, but almost corresponds to an arc of a circle
with minimal curvature. The dashed curve (ν = 2) presents a more balanced compromise between
minimal length and curvature.

analyse related geometric problems and could provide powerful tools in the field of CAGD.
Conversely, for the physicist it should be interesting to see some fundamental physics principles
in the context of a very intuitive and visual, yet non-trivial problem.

2. Formalism

We start by introducing some notations: the boundary conditions of the Hermite interpolation
problem are determined at the initial point ri and the final point rf of the interpolating curve.
For their coordinates

ri = (xi, yi) and rf = (xf , yf ), (2)

we demand that xi < xf . Here the coordinates r = (x, y) are a set of two real numbers
specifying any point in the plane. We use simple Euclidean geometry. The tangent vectors
at ri and rf are described by their inclination angles, αi and αf , with respect to the vector
pointing from ri to rf (cf figure 1).
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We call the function y(x) that interpolates between ri and rf such that the integral in
equation (1) is minimal the ‘smooth connection function’ (SCF). It has to satisfy the boundary
conditions

y(xi) = yi and y(xf ) = yf , (3)

y ′(xi) = tan(αi + α0) and y ′(xf ) = tan(αf + α0), (4)

where the prime denotes a derivative with respect to x and α0 is the angle between the positive
x-axis and the vector pointing from ri to rf . Note that our parametrization of the curve,
with one coordinate being a function of the other, breaks explicitly the equivalence of the two
coordinates. Moreover, the functional description precludes looped curves. In fact the built-in
limitation to curves without loops is a major advantage with respect to parametric curves. This
is because without this restriction in general there is no well defined solution corresponding
to the absolute minimum of the integral in equation (1) [6].

In general, any weight functional that depends only on the local curvature8

κ[y(x)] = 1

r[y(x)]
= |y ′′(x)|

[1 + y ′(x)2]3/2
, (5)

and the infinitesimal length element along the curve

ds(x) =
√

1 + y ′(x)2 dx, (6)

or any other translational and rotational invariant expression, will itself be invariant under
translations and rotations.

For the functional parametrization of the interpolating curve the integral introduced in
equation (1) reads

S̃[y(x)] ≡
∫ xf

xi

(κ[y(x)])ν ds(x) =
∫ xf

xi

|y ′′(x)|ν
[1 + y ′(x)2](3ν−1)/2

dx. (7)

We shall refer to S̃[y(x)] as the action [7]. For a given function y(x) it returns the weighted sum
of ds(x) where x goes from xi to xf . The weight at position x is given by the local curvature
κ raised to some power ν. A priori this parameter is an arbitrary real number that determines
how to choose the compromise between minimal curvature and minimal length. For example,
for ν = 0 the curvature does not play a role at all and S̃[y(x)]ν=0 is just the length of the
curve. For |ν| → ∞ the situation is exactly the opposite, since S̃[y(x)]|ν|→∞ 
 ∫

(1/r)ν dx
only depends on the curvature in this case. A special situation arises for ν = 1, where
S̃[y(x)] = ∫ xf

xi
(ds/r) = ∫ xf

xi
dα = αf − αi . Since the action gives just the difference

between the inclination angles at the boundary, independent of the particular choice of y(x),
it is impossible to determine the optimal path for ν = 1 and we exclude this case from our
subsequent discussion.

In order to find the optimal curve we have to minimize the action under the boundary
conditions in equations (3) and (4). The integrand in equation (7), usually referred to as the
Lagrangian [7]

L̃(y ′, y ′′) ≡ |y ′′(x)|ν
[1 + y ′(x)2](3ν−1)/2

, (8)

only depends on y ′(x) and y ′′(x), while there is no explicit dependence on y(x) and x. Thus y
and x enter the action S̃[y(x)] only via the boundary conditions. From equation (3) it follows
that

yf − yi = y(xf )− y(xi) =
∫ xf

xi

y ′(x) dx = constant. (9)

8 To show the relation in equation (5) it is enough to verify that the curves that describe a circle, i.e. y(x) =
±

√
r2 − (x − x0)2 + y0, where r is the radius and (x0, y0) denotes the centre of the circle, give r(x) = r .
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This constraint can be absorbed into the action functional by introducing a Lagrange multiplier
λ, resulting in a new action

S[y ′(x)] ≡ S̃[y ′(x)] + λ
∫ xf

xi

y ′(x) dx =
∫ xf

xi

[L̃ + λ y ′(x)] dx. (10)

Since there is no longer any reference to y(x), but only to its first and second derivative, we
can change variables,

q(x) = y ′(x) and q ′(x) = y ′′(x), (11)

and write the Lagrangian corresponding to the action S[q(x)] in equation (10) as

L(q, q ′) ≡ L̃(q, q ′) + λ q(x) = |q ′|ν
(1 + q2)(3ν−1)/2

+ λ q. (12)

Now, to minimize S̃[y(x)] under the boundary condition in equation (3) is equivalent to the
minimization of S[q(x)]. A necessary condition for S[q(x)] to be extremal is that its first
functional derivative δS[q(x)]/δq(x) vanishes [8]. Since S[q(x)] only depends on q and q ′,
this is a well known problem. Its solution is given by the Euler–Lagrange equation [7]:

∂L
∂q

− d

dx

∂L
∂q ′ = 0. (13)

Computing

∂L
∂q

= (1 − 3ν)|q ′|νq
(1 + q2)(3ν+1)/2

+ λ, (14)

∂L
∂q ′ = ν σ |q ′|ν−1

(1 + q2)(3ν−1)/2
, (15)

d

dx

∂L
∂q ′ = ν(ν − 1)|q ′|ν−2q ′′

(1 + q2)(3ν−1)/2
+
ν(1 − 3ν)|q ′|νq
(1 + q2)(3ν+1)/2

, (16)

where σ ≡ sign(q ′), we obtain

λ = (ν − 1)|q ′|ν−2

(1 + q2)(3ν+1)/2
[ν(1 + q2)q ′′ + (1 − 3ν)(q ′)2q]. (17)

The above equation still depends on the parameter λ. We can eliminate this dependence
by differentiating equation (17) with respect to x, yielding the following equation of motion
(EOM) [7]:

0 = (ν − 1)|q ′|ν−3

(1 + q2)
3ν+3

2

{(1 − 3ν)[(1 − 3νq2)(q ′)4 + 2νq(1 + q2)(q ′)2q ′′]

+ ν(1 + q2)2[(ν − 2)(q ′′)2 + q ′q ′′′]}. (18)

For all functions q(x) that solve the above EOM the action S[q(x)] in equation (10) is
stationary, i.e. δS[q(x)]/δq(x) = 0. However, in order to minimize S[q(x)] the so-called
Legendre condition [8],

0 <
∂2L
(∂q ′)2

= ν(ν − 1)|q ′|ν−2

(1 + q2)(3ν−1)/2
, (19)

also has to be satisfied. This condition arises from the second functional variation of the action
with respect to q(x). Note that unlike the case for the minimization of usual functions it is
only a necessary condition for a minimum of S[q(x)]. This is essentially because a small
variation in q does not necessarily imply a small variation in q ′. However in our case the
sign of ∂2L/(∂q ′)2 only depends on the prefactor ν(ν − 1), but is independent of q and q ′
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even if they are taken as independent variables. Such a situation is referred to as a ‘regular
problem’ [8] and it implies that the solutions of the EOM indeed give rise to a local minimum
of the action if ν < 0 or ν > 1. Conversely for 0 < ν < 1 one obtains a local maximum. Thus
we rule out any 0 < ν � 1 from our analysis and we shall only consider ν � 0 and ν > 1
from now on.

We note that negative values for ν are somewhat peculiar, since the corresponding SCFs
avoid zero curvature along the entire curve. However, these curves cannot loop in order to
minimize the action due to the functional description we use (see remark after equation (3)).
As a result of these two constraints we obtain well behaved curves for ν < 0.

Even though we have managed to translate the problem at hand into a differential equation,
solving this equation analytically seems like a formidable task given that equation (18) is third
order in q and non-linear. However, the integrated form in equation (17) gives us a hint of how
to proceed. The fact that λ is a constant is related to the symmetries inherent to the problem.
Studying these symmetries systematically one can simplify the problem significantly and find
its solutions.

3. Symmetries

Let us examine more carefully the problem with respect to its intrinsic symmetries. The
important point to realize is that when introducing the coordinates in equation (2) we have
made an explicit choice of

• where to define the origin,
• how to orientate the axes and
• what units of length to use.

These choices are arbitrary and once we have found a solution to our problem we can redefine
our coordinate system. Assume that y(x) solves the EOM in equation (18) in some coordinate
system � and that ỹ(x̃) is obtained from y(x) by a transformation to a different coordinate
system �̃, (

x

y

)
→

(
x̃

ỹ

)
= R

(
x

y

)
+

(
x0

y0

)
, (20)

where

R ≡
(

cos θ − sin θ
sin θ cos θ

)
(21)

describes a rotation by an angle θ , and x0 and y0 parametrize translations in the x-direction and
in the y-direction, respectively. The action in equation (7) is defined in terms of the curvature
radius r (cf equation (5)) and the length element ds in equation (6). Both quantities are
manifestly invariant under rotations and translations. Therefore it is clear that the coordinate
transformations in equation (20) do not change the action or the EOM derived from it. However
the boundary conditions obviously have to change under � → �̃.

Let us consider the infinitesimal change of the coordinate y at a given x,

δy(x) ≡ ỹ(x)− y(x), (22)

for the three types of coordinate transformation. For a translation in the y-direction

y0 = εy � 1, x0 = 0, θ = 0, (23)

the answer is trivial. The change in y is simply

δy(x, εy) = εy, (24)
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implying that the changes in all the derivatives of y(x) vanish:

δq(x, εy) = 0,

δq ′(x, εy) = 0,

δq ′′(x, εy) = 0.

(25)

However, a translation in the x-direction

y0 = 0, x0 = εx � 1, θ = 0, (26)

is a bit more tricky. First, note that

ỹ(x̃) = y(x). (27)

This expresses merely the fact that the coordinate transformation in equation (20) leaves the
functional behaviour of y(x) invariant. It does not make any difference whether we refer to
the function by y(x) in the coordinate system � or ỹ(x̃) in the system �̃. Then expanding
ỹ(x̃) around x to first order gives

ỹ(x̃) = ỹ(x) +
∂y

∂x

∣∣∣∣
x

· εx, (28)

implying that

δy(x, εx) = − ∂y
∂x

∣∣∣∣
x

· εx. (29)

From equation (29) it follows that the corresponding changes in the derivatives of y(x) are
given by

δq(x, εx) = −q ′(x) εx,
δq ′(x, εx) = −q ′′(x) εx,
δq ′′(x, εx) = −q ′′′(x) εx.

(30)

Finally, an infinitesimal rotation

y0 = 0, x0 = 0, θ = εθ , (31)

involves both a change in x by −yεθ and in y by xεθ . Together this results in a change of y(x)
by

δy(x, εθ ) =
(
x +

∂y

∂x

∣∣∣∣
x

· y
)
εθ . (32)

From equation (32) it follows that the changes in q, q ′ and q ′′ for an infinitesimal rotation are
given by

δq(x, εθ ) = (1 + q2 + yq ′) εθ ,
δq ′(x, εθ ) = (3qq ′ + yq ′′) εθ ,
δq ′′(x, εθ ) = (3(q ′)2 + 4qq ′′ + yq ′′′) εθ .

(33)

Let us now investigate the effect of the coordinate transformations in equation (20) on
the Lagrangian L in equation (12). In general an infinitesimal transformation parametrized by
ε � 1 will induce a change

δL ≡ L(q̃, q̃ ′)− L(q, q ′). (34)
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Provided that L has no explicit dependence on x, expanding L(q̃, q̃ ′) around q to first order
gives

δL = ∂L
∂q
δq +

∂L
∂q ′ δq

′ (35)

= d

dx

(
∂L
∂q ′ δq

)
+

(
∂L
∂q

− d

dx

∂L
∂q ′

)
δq. (36)

The second term in equation (36) vanishes for q(x) that satisfy the EOM (13).
Any transformation that changes the action S[q(x)] in equation (10) at most by a constant

is called a symmetry transformation. Such a transformation does not change the extremal
condition for the action and therefore leaves the EOM invariant. (Note however that not all
transformations that leave the EOM unchanged are symmetry transformations according to
our definition.) Then, the corresponding Lagrangian could change only by a total derivative:

δL = ε
dF

dx
, (37)

where F(q, q ′) is a function of q and q ′. Equating the two results for δL we find that

ε
dF

dx
= d

dx

(
∂L
∂q ′ δq

)
. (38)

We stress that the expression on the left-hand side is correct for a symmetry transformation
of any function y(x), while the right-hand side is only valid for a transformation of y(x) that
solves the EOM. From equation (38) it follows that the conserved charge defined as

Q = F − ∂L
∂q ′

δq

ε
(39)

is a constant with respect to x, i.e. dQ/dx = 0. Consequently it has one specific value for all
points on a particular solution of the EOM. ObviouslyQ can only be defined up to a constant.
The above argument, that every continuous symmetry transformation implies a conserved
charge, is known as the Noether theorem [3].

To be explicit let us apply it to a translation in the x direction. Using equation (30) it
follows that

δL(x, εx) = −
(
∂L
∂q
q ′ +

∂L
∂q ′ q

′′
)
εx (40)

= −dL
dx
εx. (41)

This means that (up to a constant) we can identifyFx = −L. Then it follows that the conserved
charge corresponding to translations in the x-direction is given by

Px = ∂L
∂q ′ q

′ − L = (ν − 1)|q ′|ν
(1 + q2)(3ν−1)/2

− λ q. (42)

We call Px the conserved momentum in the x direction [7]. In fact it is nothing more than the
Legendre transformation of the Lagrangian with respect to q ′. (If the variable of integration
in equation (10) had been the time t rather the coordinate x then the equivalent Legendre
transformation of the Lagrangian with respect to dq/dt is called the Hamiltonian and the
charge related to time invariance is the energy [7].)

One might guess that a similar argument for translations in the y-direction should give
another conserved charge Py , which is the conserved momentum in the y direction [7].
However a change in the variable y(x) as in equation (24) has no effect on q(x) and q ′(x) (see
equation (25)), implying trivially that

δL(x, εy) = 0. (43)
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Thus Noether’s theorem does not help in this case to derive the conserved charge. However
we have already encountered another conserved quantity, which could serve as a candidate
for Py . In order to absorb the boundary condition into the action we introduced the Lagrange
multiplier λ, which intuitively is related to changes in y, cf equation (10). Equation (17) states
that λ is equal to a complicated function of q, q ′ and q ′′ for all x. Therefore this function is
a constant of motion. To prove that indeed Py = λ is nontrivial, and we shall show this after
discussing the conserved charge related to the rotations in equation (20).

Using equations (14) and (15) and the changes in q and q ′ under rotations according to
equation (33) the change in the Lagrangian under an infinitesimal rotation is

δL(x, εθ ) =
{[
(1 − 3ν)|q ′|νq
(1 + q2)(3ν+1)/2

+ λ

]
(1 + q2 + yq ′) +

[
ν|q ′|ν−1

(1 + q2)(3ν−1)/2

]
(3qq ′ + yq ′′)

}
εθ .

(44)

It is not difficult to check that this can be rewritten as a total derivative,

δL(x, εθ ) = d

dx

[
y|q ′|ν

(1 + q2)(3ν−1)/2
+ λ(x + yq)

]
εθ . (45)

Thus for infinitesimal rotations the function F can be identified to be (up to a constant)

Fθ = yL + xλ. (46)

Then the charge corresponding to the rotation symmetry, which is called the total angular
momentum [7], is given by

J = Fθ − ∂L
∂q ′

δq(x, εθ )

εθ
(47)

= yL + xλ− ν σ |q ′|ν−1

(1 + q2)(3ν−1)/2
(1 + q2 + yq ′) (48)

= (xPy − yPx) + S. (49)

In the last step we have separated the total angular momentum into the orbital contribution

L = xPy − yPx (50)

and the remaining term

S = − ν σ |q ′|ν−1

(1 + q2)
3ν−3

2

= − ν σ

[r(x)]ν−1
, (51)

which we call the spin or intrinsic angular momentum [7]. The orbital angular momentum [7]
would be the sole contribution if y(x)were a straight line (as is the case for ν = 0 or if q ′ = 0).
A non-vanishing spin S arises for all the other curves due to their curvature. Note that it is
sensitive to the sign σ of q ′.

We would like to return now to our claim thatPy coincides with λ defined in equation (17).
To this end let us compute the change in Pi(i = x, y) induced by rotations. In general

δPi(x, εθ ) =
[
∂Pi

∂q
(1 + q2) +

∂Pi

∂q ′ (3qq
′) +

∂Pi

∂q ′′ (3(q
′)2 + 4qq ′′)

]
εθ , (52)

where we used the results in equation (33) and the fact that the terms proportional to y add up
to the total derivative of Pi :

y

[
∂Pi

∂q
q ′ +

∂Pi

∂q ′ q
′′ +

∂Pi

∂q ′′ q
′′′
]
εθ = y

dPi
dx

εθ = 0. (53)
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Assuming that indeed Py = λ, a somewhat tedious but straightforward calculation of δPy
according to equation (52) yields

δPy(x, εθ ) = (ν − 1)|q ′|ν−2

(1 + q2)(3ν+1)/2
[(1 + 3νq2)(q ′)2 − νq(1 + q2)q ′′]εθ = Pxεθ . (54)

Similarly using equation (52) one shows that δPx(x, εθ ) = −Pyεθ . From the infinitesimal
transformations it is clear that p = (Px, Py) transforms like a vector under rotations, i.e.
p̃ = R ·p, where R is the rotation matrix defined in equation (21). It follows that the constant
λ in equation (17) can indeed be identified with the conserved momentum in the y-direction.

Using the above results it is easy to compute the change in the orbital angular momentum
L under infinitesimal rotations:

δL(x, εθ ) = x · δPy(x, εθ )− [δy · Px(x, εθ ) + y · δPx(x, εθ )] = −y(qPx − Py)εθ . (55)

Note that this is the change at a fixed x, so of course there is no variation with respect to x.
The change in the spin S under rotations is given by

δS(x, εθ ) = ∂S

∂q
δq(x, εθ ) +

∂S

∂q ′ δq
′(x, εθ )

= ν(ν − 1)
y|q ′|ν−2

(1 + q2)(3ν−1)/2
[3q(q ′)2 − (1 + q2)q ′′]εθ

= y(qPx − Py)εθ . (56)

It follows that the changes in L and S exactly cancel each other such that the total angular
momentum J does not change under rotations, i.e.

δJ (x, εθ ) = δL(x, εθ ) + δS(x, εθ ) = 0. (57)

For completeness let us also compute the changes of the three conserved charges under
infinitesimal translations. Since the momenta Px and Py do not depend explicitly on y(x) they
are trivially invariant under translations in the y-direction by δy(x, εx), due to equation (25).
Infinitesimal changes in the x-directions induce δy(x, εx) as given in equation (29), implying
that the change of the nth derivative of y(x) is given by y(n)(x, εx) = −εxy(n+1)(x) (cf
equation (30)). Then the changes in the momenta are proportional to their total derivative,
which vanishes, i.e.

δPi(x, εx) = −
(
∂Pi

∂q
q ′ +

∂Pi

∂q ′ q
′′ +

∂Pi

∂q ′′ q
′′′
)
εx = −dPi

dx
εx = 0. (58)

Finally the total angular momentum J in equation (49) does depend explicitly on y(x) and
consequently changes under translations in the y-direction by

δJ (x, εy) = −Pxεy. (59)

For the change in J due to an infinitesimal translation in the x-direction we obtain an expression
similar to that in equation (58):

δJ (x, εx) = −
(
∂J

∂y
q +

∂J

∂q
q ′ +

∂J

∂q ′ q
′′ +

∂J

∂q ′′ q
′′′
)
εx = −

(
dJ

dx
− ∂J

∂x

)
εx = Pyεx, (60)

where we used the facts that dJ/dx = 0 and that J depends explicitly on x. We note that the
results in equations (60) and (59) are also correct for finite translations, since the changes do
not depend on J .
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4. Scaling and dimensional analysis

Consider a scaling transformation that changes x and y by a fraction a of their original value,
i.e. (

x

y

)
→

(
x̃

ỹ

)
=

(
x

y

)
+ a

(
x

y

)
. (61)

The infinitesimal change in y(x) at a fixed x under such a transformation for a = εa � 1 is
given by

δy(x, εa) =
(
y − ∂y

∂x

∣∣∣∣
x

x

)
· εa. (62)

Consequently the derivatives of y(x) change by

δq(x, εa) = −(q ′x) εa,
δq ′(x, εa) = −(q ′′x + q ′) εa,
δq(n)(x, εa) = −(q(n+1)x + nq(n)) εa.

(63)

Therefore it follows that some arbitrary function A of y(x) and its derivatives changes under
an infinitesimal scaling transformation by

δA(x, εa) = −
[(

dA

dx
− ∂A

∂x

)
x − ∂A

∂y
y +

∑
n

∂A

∂q(n)
nq(n)

]
εa. (64)

Using this formula one can show that the conserved charges Px , Py and J transform as follows
under the scaling transformation:

δPi(x, εa) = −νPi εa, (65)

δJ (x, εa) = (1 − ν)J εa, (66)

where i = x, y. Note that for each charge the infinitesimal change is proportional to its original
value. This implies that the finite scaling transformations are given by Pi → Pi · exp(−νa)
and J → J · exp[(1 − ν)a].

The interpretation of the proportionality factor follows from the following argument. Any
quantity A can be written as a product of a dimensionless number and the dimension [A].
Since the problem we discuss is purely geometrical we only have a fundamental length scale
l0. So [A] = l

µ

0 can be written as some power of this scale. Now the scaling transformation
in equation (61) can be viewed as a change of the length scale l0 by some fraction δl0 = εal0.
Then to first order the corresponding change in A is given by

δA = ∂A

∂l0
δl0 = µAεa. (67)

Thus the proportionality factor is nothing more than the dimension of the quantity and we find
that [Px] = [Py] = l−ν0 and [J ] = l1−ν

0 . It is reassuring that these results also follow from
dimensional analysis of the definitions of the conserved charges by noting that [x] = [y] = l0
and [q(n)] = l−n0 . The dimension of the action [S] = l1−ν

0 allows us to understand a posteriori
why the regime 0 < ν � 1 had to be excluded from our analysis. If ν = 1 the action is
invariant under scaling transformations. In particular, we can shrink or magnify sections of
any possible solution and thereby transform it to any arbitrary shape without changing its action.
This explains why for ν = 1 the action only depends on &α = αf − αi , as mentioned after
equation (7). The physics jargon is to say that the action becomes ‘soft’ when ν approaches
unity and it is ‘critical’ at ν = 1 [9]. Now if 0 < ν < 1 one can always find a ‘trivial solution’
which is defined as follows: just follow the rays at ri and rf to the point where they intersect
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and bend the curve in the infinitesimal vicinity of the intersection point by&α. For this curve
the action vanishes, since any length element ds(x) of the straight part of the curve, where
r(x) = ∞, does not contribute to the action as long as ν > 0. Moreover the (infinitesimal)
part of the curve that is bent also does not affect the action, because from the scaling property
of the action we know that it decreases when shrinking the unit length l0 as long as ν < 1.
Consequently continuously scaling down the region where the bending takes place, we achieve
a zero, and hence minimal action. For ν < 0 the fact that any finite straight piece of the curve
gives an infinite contribution to the action precludes this solution and for ν > 1 it is not viable
since, due to the inverse scaling, the action blows up if the curve is bent strongly on a section
of small length.

The fact that the momenta and the action have somewhat unusual (and ν-dependent)
dimensions could easily be remedied by multiplying the Lagrangian in equation (12) by lν−1

0 .
Then the action and the angular momenta would be dimensionless and the linear momenta
would have dimensions of l−1

0 .
Using equation (64) or just applying dimensional arguments it follows that a scaling

transformation on the right-hand side of the EOM in equation (18) results in a multiplication
by a factor [1 + (1 − ν)εa]. However since the left-hand side is zero it is clear that the EOM
is unchanged in the new coordinate system. The important point to note is that even though
the EOM is invariant under scaling, the transformation in equation (61) is not a symmetry
transformation. The reason is that the change in the Lagrangian under an infinitesimal scaling
transformation,

δL(x, εa) = −
[

d

dx
(xL) + L(1 − ν)

]
εa, (68)

cannot be written as a total derivative for ν �= 1. As a consequence there is no conserved
charge related to scaling.

5. The solution

The coordinate transformations discussed in the previous section are very useful for actually
solving our problem: if we manage to find the SCF in some convenient coordinate system
�, we can use translations, rotations and scaling to fit the particular solution to any boundary
conditions given in some other coordinate system �̃. Let us consider a particular solution for
which Px = J = 0. Then from equations (42) and (49) it follows that

0 = (ν − 1)|q ′|ν
(1 + q2)(3ν−1)/2

− qPy, (69)

0 = xPy − νσ |q ′|ν−1

(1 + q2)(3ν−3)/2
. (70)

From equation (70) we obtain

|q ′| =
(
σxPy

ν

)1/(ν−1)

(1 + q2)3/2, (71)

provided that σxPy/ν is non-negative. This requirement implies that when x changes sign, q ′

also has to change its sign σ . Plugging the result for |q ′| into equation (69) and solving for q2

we find

q2 = C |x|2ν/(ν−1)

1 − C |x|2ν/(ν−1)
, (72)
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whereC ≡ (ν−1)2|ν|2ν/(1−ν)|Py |2/(ν−1) can be set to unity by choosingPy = ±|ν|ν/|ν−1|ν−1.
Because q can be positive or negative there are two solutions

y±(x) = ±
∫ x

x0

√
(x̄2)ν/(ν−1)

1 − (x̄2)ν/(ν−1)
dx̄ + y±(x0), (73)

where y±(x0) are the respective integration constants. Since either ν � 0 or ν > 1 the solution
in equation (74) is defined only in the interval −1 < x < 1.

In the limit where |ν| → ∞ we can solve equation (74) analytically:

lim
|ν|→∞

y±(x) = ±
∫ x

x0

√
x̄2

1 − x̄2
dx̄ + y±(x0) = ±

(√
1 − x2

0 −
√

1 − x2

)
+ y±(x0). (74)

We see that in this case the SCF describes a segment of a circle, which has a constant curvature
radius and therefore presents the best solution if we only care about minimal curvature along
the curve. For finite values of ν the length of the curve also plays a role. The integral can be
expressed in terms of hypergeometric functions F(a, b; c; x). For 0 < x < 1 we have, up to
a numerical constant,

y±(x) = ∓x Im

[
F

(
1 − ν

2ν
,

1

2
; 1 + ν

2ν
; x2ν/(1−ν)

)]
. (75)

This representation is valid provided that c = (1 + ν)/2ν is not zero or a negative integer. We
note that for the corresponding values νc ∈ {−1,−1/3,−1/5,−1/7, . . .} there exist closed
expressions for y±(x) that analytically continue the expression in equation (75) for ν → νc.
For example for ν = −1 we have (again for 0 < x < 1 and up to a numerical constant)

y±(x)|ν=−1 = ∓x
{√

x − x2 +
1

2
arctan

[√
x−1 − 1

(
2x − 1

2x − 2

)]}
. (76)

We show the functions y+(x) (solid) and y−(x) (dashed) for various ν in figure 2. The
two branches are monotonic and we have chosen the constants of integration such that
y±(±1) ≡ lim|x|→±1[y±(x)] = 0. For this choice y+(x) and y−(x) can be obtained from each
other by a reflection with respect to the y-axis. Since q(x) is an even function of x it follows that
y±(x) is antisymmetric with respect to y = y(0) ≡ y±(0), i.e. y±(−|x|) = 2y(0)− y±(|x|).
The curvature of the SCF changes sign at x = 0. For large |ν| the SCF is very close to the
arc of a circle. The curves for ν > 1 are below the curve for |ν| → ∞ and they become
‘flatter’ and thus shorter for smaller values of ν. The curves for positive ν approach x = 0
with a vanishing slope and their curvature radius diverges at x = 0. The closer ν is to unity the
sooner the curve approaches the value y±(0) when x → 0 (which can be understood from the
scaling behaviour of the action, cf section 4). The curves for ν < 0 all reside above the curve
corresponding to |ν| → ∞. For these curves both the slope q(x) and the curvature radius r(x)
vanish at x = 0.

The standard SCFs shown in figure 2 are the fundamental solutions to the boundary
problem we want to solve. Any specific solution consists of a segment of a standard SCF that
can be viewed as a template which may be rotated, translated and scaled in order to fit the
boundary conditions. Before we continue to describe in detail how this can be done, it is useful
to extend the SCFs beyond the interval they are defined on.

To this end we note that from equation (72) it follows that the curvature radius, defined in
equation (5), is given by

r(x)± = |x|1/(1−ν) · ν − 1

ν
. (77)
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Figure 2. Standard SCFs for various ν. The two branches are monotonic and we have chosen the
constants of integration such that they can be obtained from each other by a reflection with respect
to the y-axis. Each SCF changes the sign of its curvature at x = 0. For large |ν| the SCF is very
close to the arc of a circle. The curves for ν > 1 are below the curve corresponding to |ν| → ∞.
These curves become ‘flatter’ and thus shorter for smaller values of ν. They approach x = 0 with
a vanishing slope and their curvature radius diverges at x = 0. The closer ν is to unity the sooner
the curve approaches the value y(0) when x → 0. The curves for ν < 0 all reside above the curve
corresponding to |ν| → ∞. For these curves both the slope q(x) and the curvature radius r(x)
vanish at x = 0.

It has the same value for the two branches of the SCF in equation (74). Therefore, even though
q(x) diverges at |x| = 1 the curvature radius has a well defined limit for |x| → 1,

lim
|x|→1

r(x)± = ν − 1

ν
. (78)
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Figure 3. Extended standard SCFs for various ν. These functions are obtained from the SCFs of
figure 2 by exchanging the coordinates x and y. All curves have been rescaled such that they are
defined in the interval −1 < x < 1. The interval −1/2 < x < 1/2 corresponds to the SCFs of
figure 2. The continuations beyond x = ±1/2 use a segment of the other branch, which is attached
to the centrepiece such that the curvature radius is continuous at x = ±1/2.

Thus it is natural to connect the two solutions y±(x) to one single curve and for the following
we shall fix the constant of integration such that lim|x|→1 y(x) = 0 for all curves. The problem
is that these curves are not single valued. In order to express them as a single function we
simply exchange the coordinates x and y. The resulting curves are shown in figure 3. All
curves have been rescaled such that they are defined in the interval −1 < x < 1. The interval
−1/2 < x < 1/2 corresponds to the SCFs of figure 2. The continuations beyond x = ±1/2
use a segment of the other branch, which is attached to the centrepiece such that the curvature
radius is continuous at x = ±1/2.

Now that we have these ‘extended standard SCFs’ of a given ν > 1 for a particular set of
values for the conserved charges, namely

Px = J = 0 and Py = ± |ν|ν
|ν − 1|ν−1

, (79)
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it is not difficult to obtain a specific SCF for any given boundary conditions in equations (3)
and (4). The basic idea is to find first two points r̃i and r̃f on a ‘standard SCF’, where the
slopes correspond to the required angles αi and αf , and then to apply a set of coordinate
transformations to the curve in order to match the boundary conditions. The first step implies
that we have to check whether it is possible to find positions x̃i and x̃f somewhere on the
standard SCF such that

q(x̃i) = tan(αi + α̃0) and q(x̃f ) = tan(αf + α̃0), (80)

where

tan α̃0 = t0(x̃i , x̃f ) ≡ ỹ(x̃f )− ỹ(x̃i)

x̃f − x̃i
. (81)

Using the fact that tan(α+β) = (tan α+tan β)/(1−tan α tan β)we can rewrite these conditions
as two coupled equations

tan(αi) = ti(x̃i , x̃f ) ≡ q(x̃i)− t0(x̃i , x̃f )

1 + q(x̃i) t0(x̃i , x̃f )
, (82)

tan(αf ) = tf (x̃i , x̃f ) ≡ q(x̃f )− t0(x̃i , x̃f )

1 + q(x̃f ) t0(x̃i , x̃f )
. (83)

This set of equations can be solved numerically9. For example one can apply Newton’s method
and use the iteration scheme(
x̃
(n+1)
i

x̃
(n+1)
f

)
=

(
x̃
(n)
i

x̃
(n)
f

)
−

(
∂ti/∂xi ∂tf /∂xi
∂ti/∂xf ∂tf /∂xi

)−1∣∣∣∣
x̃
(n)
i,f

(
ti(x̃

(n)
i,f )− tan(αi)

tf (x̃
(n)
i,f )− tan(αf )

)
(84)

Of course such an iterative procedure will only converge provided that for a given ν one
can indeed find two points on the standard SCF that satisfy equation (80). The important
observation is that using the extended standard SCFs (as shown in figure 3) it is possible to
find a suitable segment of the curves for any given pair of (αi, αf ). Thus we shall use these
curves in the following.

In general the endpoints r̃i and r̃f of the fitting segments do not satisfy the boundary
conditions in equations (3) and (4). However, it is important to realize that neither translations,
nor rotations, nor scaling transformations change the angles αi and αf . This is because they
are defined relative to the line through r̃i and r̃f . The only variable in equation (80) that
does change under coordinate transformations is the angle α̃0 that defines the direction of this
line with respect to the x-axis. Thus we can apply a rotation in order to match α̃0 with any
given value in equation (4) for α0. Since α̃0 is defined as the ratio between the differences of
the coordinates of r̃i and r̃f (see equation (82)) it is invariant under translations and scaling
transformations. This enables us also to satisfy the boundary conditions in equation (3) by
first scaling the (rotated) SCF ỹ(x̃) such that the distance between r̃i and r̃f coincides with the
distance between ri and rf and then translating the resulting curve such that it connects these
points. The SCF obtained like this satisfies both equations (3) and (4). In figure 4 we show
a specific set of SCFs, each corresponding to a different ν, that all satisfy the same boundary
conditions. Various other examples of SCFs, that all have been obtained by the numerical
recipe described above, are shown in figure 5. Each plot corresponds to a particular choice of
(αi, αf ) and shows the behaviour of the solution for five different values of ν (see footnote 9).

9 All numerical analyses in this work were performed using Mathematica 3.0. The code is available upon request
from the authors.
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ν=20 ν=2 ν=1.3 ν= − 0.5 ν= − 2

Figure 4. Example for a specific set of SCFs that all satisfy the same boundary conditions. Each
curve corresponds to a different ν as indicated in the legend. All the solutions consists of a segment
of an extended standard SCF that can be viewed as a template which may be rotated, translated
and scaled in order to fit the boundary conditions. This example corresponds to αi = 20◦ and
αf = 70◦.

6. Comparing the SCF with other curves

We would like to compare the SCF discussed in this paper with other ‘conventional’
interpolation functions. In particular for practical purposes it is important to know how much
better the optimal path (i.e. the SCF) is with respect to some approximation. To this end
it is useful to have a closed expression for the action in equation (7), which determines the
‘smoothness’ of any curve y(x). Using equation (42) its integrand can be written in terms of
the linear momenta as

L̃ = Px + Py y ′(x)
ν − 1

. (85)
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Figure 5. Examples for solving specific choices of (αi , αf ) with the (extended) standard SCFs.
Each plot corresponds to a particular choice of (αi , αf ) and shows the behaviour of the solution
for five different values of ν as indicated in the legend (in degrees).

If y(x) solves the EOM, then Px and Py are constants and L̃ can easily be integrated, resulting
in

S̃ = Px(xf − xi) + Py(yf − yi)

ν − 1
= p · (rf − ri )

ν − 1
. (86)

Note that S̃ is manifestly invariant under rotations and translations. If y(x) does not solve the
EOM, the integration in equation (7) in general has to be performed numerically. Standard
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interpolation curves are often given in parametric form, i.e. as {x(t), y(t)}, where t varies
within a given interval [ti , tf ] along the curve. In this case the action is given by

S̃p =
∫ tf

ti

|ẋÿ − ẍẏ|ν
(ẋ2 + ẏ2)(3ν−1)/2

dt =
∫ tf

ti

|ṙ × r̈|ν
ṙ3ν−1

dt, (87)

where the dot denotes a derivative with respect to t . In the second expression in equation (87)
the manifest rotational and translational invariance of S̃p is most apparent. We note that in
principle one could also minimize this action in order to determine the SCFs. However in this
case the Euler–Lagrange formalism results in two coupled non-trivial differential equations,
which appear to be even harder to solve than the EOM we obtained in equation (18).

A well known class of interpolations is given by the Bezier curves [5]. The shapes of these
curves are related very intuitively to a set ofN control points {cj }. c1 and cN are the initial (ri)
and final point (rf ) of the curve and ci = c2 − c1 and cf = cN − cN−1 are tangent vectors to
the curve at ri and rf , respectively. In general the curve does not go through the intermediate
control points, but it is ‘dragged’ towards them. The parametric form of the curve is given by
the sum over the cj times a set of polynomial basis functions. For example, the cubic Bezier
curve is given by

b3(t) = (1 − t)3c1 + 3t (1 − t)2c2 + 3t2(1 − t)c3 + t3c4, (88)

where t goes from ti = 0 to tf = 1 along the curve. In this case the boundary conditions in
equations (3) and (4) fix all the control parameters except the lengths of the tangent vectors
ci = |ci | and cf = |cf |.

An interesting question is how the weight functional behaves as a function of ci and cf
for a given value of ν. To this end we have computed the action in equation (88) over a range
of values for (ci, cf ) for three values of ν (i.e. ν = {1.1, 1.3, 2} as indicated above each of the
vertical panels in figure 6) (see footnote 9). We have chosen the boundary conditions such that
we can compare the results for the Bezier curve with the standard SCF over its full range, i.e.
ri,f = (∓1, y(∓1)) and y ′(∓1) = −∞. The results for the ratio between the Bezier action
and the minimal action

ρ = S̃p(b3)/S̃ (89)

are shown in the top panel of figure 6 as contour plots. ρ is a well behaved function of (ci, cf )
with a global minimum ρmin > 1. The contours are concentric around the optimal choice for
(ci, cf ), which is indicated by a dot. One can see that the plots are symmetric with respect to
ci and cf as expected from the symmetric boundary conditions. The horizontal panel in the
centre of figure 6 shows ρ as a function of c = ci = cf (i.e. the diagonal cross-section through
the contour plots). In the bottom panel of figure 6 we have plotted the optimal Bezier curves
and the corresponding SCFs (dashed) for comparison. Indeed these Bezier curves present fair
approximations to the SCFs. Interestingly the best result is obtained for ν = ν∗ 
 1.3, in
which case the Bezier curve has a vanishing slope at x = 0, just as the SCF does. For ν < ν∗

(ν > ν∗) the Bezier curves passes through x = 0 with a positive (negative) slope. We remark
that the boundary conditions we choose present the ‘worst case’ scenario for the Bezier curves.
In general partial segments of the standard SCF can be approximated much better by Bezier
curves with ρ very close to one in most cases.

In figure 7 we show ρmin as a function of ν for the above-mentioned boundary conditions
(see footnote 9). One can see that ρmin(ν) has a local minimum at ν∗. In the vicinity of ν∗ we
have ρmin ≈ 1 and the Bezier curves provide excellent approximations to the corresponding
SCFs in this regime. However, for larger ν it is increasingly difficult to match the SCF by
a Bezier curve and the ratio between the actions becomes significant. In fact ρmin grows
exponentially for ν � ν∗ as is apparent from the logarithmic plot. We remark that in order to
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Figure 6. Bezier curves as approximations to SCFs for ν = {1.1, 1.3, 2} (corresponding to the left,
centre and right column, respectively) as indicated above each of the vertical panels: the top panel
shows the ratio ρ between the Bezier action S̃p(b3) and the minimal action S̃ as contour plots. ρ is
a well behaved function of (ci , cf ) with a global minimum ρmin > 1. The contours are concentric
around the optimal choice for (ci , cf ) (indicated by a dot). The plots are symmetric with respect to
ci and cf . The horizontal panel in the centre shows ρ as a function of c = ci = cf . In the bottom
panel we have plotted the optimal Bezier curves and the corresponding SCFs (dashed).

judge the approximation in this regime one might prefer to consider the quantity ρ1/ν , which
asymptotically approaches a constant.

The numerical results presented in figures 6 and 7 can only give a first flavour of the
relation between SCFs and Bezier curves. Nevertheless they serve as an example of how to
relate the fundamental variational curves we have studied in this paper to computationally more
feasible curves. Clearly, in order to benefit from the accuracy of the SCFs as exact solutions
to a variational problem in interactive applications efficient methods to approximate the SCFs
will be needed. Detailed analyses of this kind are beyond the scope of this paper and will be
pursued elsewhere.
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Figure 7. The ratio ρmin between the optimal Bezier action S̃minp (b3) and the minimal action S̃ is
shown as a function of ν for the boundary conditions mentioned in the text. From the left-hand plot
one can see that ρmin(ν) has a local minimum at ν∗ 
 1.3. In the vicinity of ν∗ we have ρmin ≈ 1
and the Bezier curves provide excellent approximations to the corresponding SCFs in this regime.
The right-hand plot shows ρmin(ν) on a log scale for a large range of ν. One can see that ρmin
grows exponentially for ν � ν∗.

7. Conclusions and outlook

We have presented a generic solution of how to connect two points in a plane by a smooth
curve that goes through these points with given tangent vectors. Our approach uses extensively
notions that are well known in classical mechanics. The SCF y(x) has to minimize a
functional that reflects the smoothness of any function by integrating the curvature to some
power ν along the curve. The functional variation via the Euler–Lagrange formalism leads
to a complicated non-linear third order differential equation. However the translational and
rotational symmetries of the problem are of great help since they imply conserved charges,
i.e. the linear and the angular momenta, that help to simplify the problem significantly. Making
a specific choice for the charges it is possible to obtain the solution y(x) for a given ν in terms of
hypergeometric functions. Applying the appropriate coordinate transformation to this solution
allows us to adjust it to arbitrary boundary conditions. A comparison of the variational curves
with standard interpolation curves is of practical relevance for computational applications. We
find that for a wide range of boundary conditions and not too large values of ν cubic Bezier
curves can provide excellent approximations to our exact solutions.

We have worked out in detail a new formalism of how to find explicitly the variational
curves that connect two points in the two-dimensional Euclidean space. Several generalizations
and extensions of this basic procedure are possible. First, the number of points that define the
SCF can be increased. For a single curve the solution will still be determined by four boundary
conditions, but one may choose different conditions than those in equations (3) and (4). In
particular one could also fix the curvature at the initial or final point. Moreover it is possible
to paste together several elementary solutions in order to find interpolations between several
points which cannot be achieved by a single SCF. How to do this best gives rise to a new
optimization problem. Finally we note that one can also choose to apply our formalism to a
different geometry. For example one may consider a time-dependent SCF x(t) in Minkowski
space, where the metric is defined via r2 = x2 − t2. Also generalization of the problem to



3898 A Alon and S Bergmann

higher-dimensional spaces is conceivable. In this case the SCF would describe some smooth
manifold that connects two extended objects (such as strings). In particular an extension to
three dimensions would be of practical interest (e.g. for CAGD).
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